2º COLÓQUIO ULBRA DE EXTENSÃO, PESQUISA E ENSINO

2º ENCONTRO ULBRA DE BOLSISTAS CNPq E FAPERGS

Estudo da computacional da interação de substratos e inibidores com a enzima arilamina N-acetiltransferase de *Mycobacterium tuberculosis*

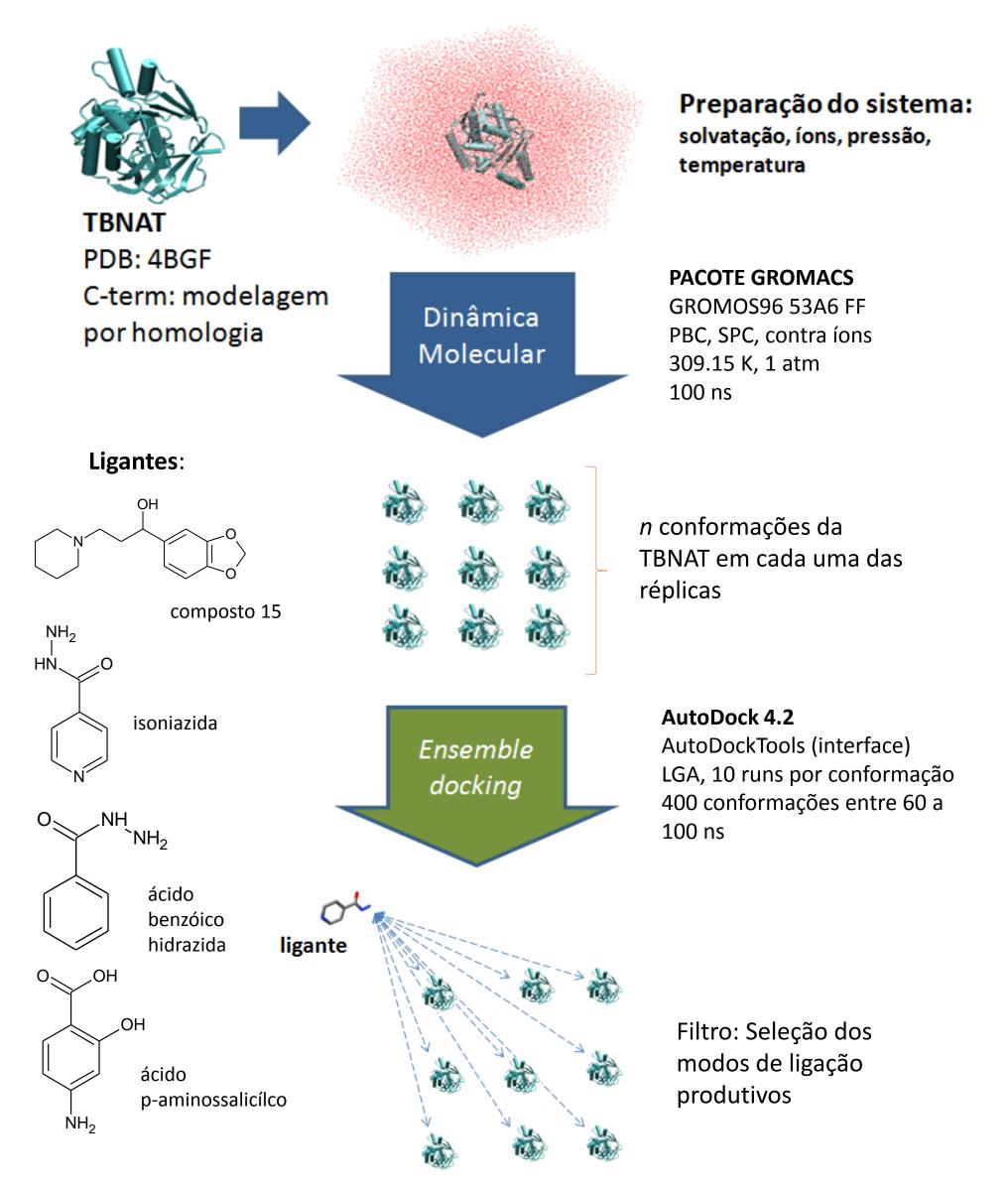
OBACH, Lucas S.^{1,3}; DE AMORIM, Hermes L.N.^{2,3,4}

¹Aluno do curso de Ciência da Computação – ULBRA; Bolsista de Iniciação Tecnológica FAPERGS - ULBRA

² Programa de Mestrado Profissional em Genética e Toxicologia Aplicada – ULBRA

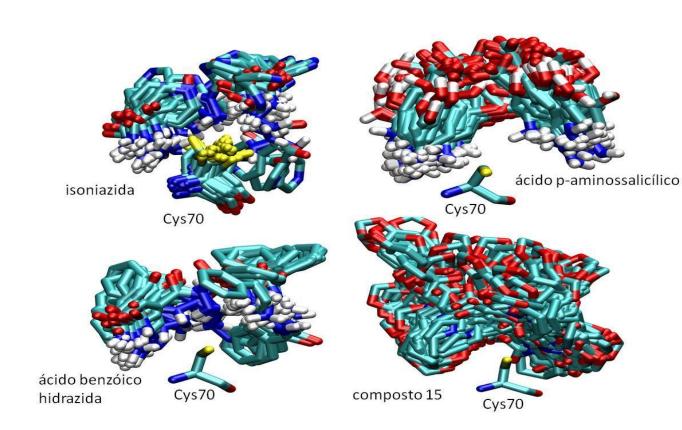
³Laboratório de Bioinformática Estrutural (LaBiE) - ULBRA

⁴Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada a Saúde - ULBRA


INTRODUÇÃO

Atualmente cerca de 9 milhões de pessoas são infectadas e 1,4 milhões morrem de tuberculose no mundo. No Brasil, 71 mil novos casos de tuberculose são registrados a cada ano. Como agravante, há o surgimento de cepas resistentes ou imunes tanto aos tratamentos de primeira linha (isoniazida e rifampicina) quanto mais avançados aos (combinação de fármacos). Um novo alvo que tem sido considerado contra a tuberculose é a arilamina N-acetiltransferase do *M. tuberculosis* (TBNAT). Essa enzima está envolvida na síntese de ácidos micólicos, componentes essenciais da parede celular bacteriana, entretanto, sua alta semelhança com as NATs humanas torna difícil o planejamento de novos fármacos. Assim, para atingir-se um nível de seletividade adequado é necessário caracterizar os resíduos de aminoácidos presentes no sítio ativo da desta enzima que estão envolvidos no processo de reconhecimento e ligação.

OBJETIVOS


Avaliar a interação de substratos e inibidores conhecidos da TBNAT para caracterizar os resíduos de aminoácidos presentes no sítio ativo desta enzima.

METODOLOGIA

No ensemble docking são extraídas conformações do receptor durante a simulação por dinâmica molecular, sendo cada uma dessas conformações transientes submetidas a um cálculo de docagem molecular. A aplicação do filtro elimina os resultados do ensemble docking que não fazem sentido do ponto de vista do mecanismo proposto para a enzima.

RESULTADOS

Figura 1. Poses selecionadas pelo filtro após o *ensenble docking*

Como pode ser observado na figura 1, somente parte dos 4.000 resultados de docagem para cada composto gera configurações espaciais onde o ligante está posicionado para interagir com resíduos do sítio de ligação.

Tabela 1 – Número e energia média das conformações da trajetória 1 (tbnatwt1) e da trajetória 2 (tbnatwt2)

Ligante	Trajetória	Energia Média dos Selecionados (kcal/mol)	Número médio de selecionados por frame
Isoniazida	Tbnatwt1	-4.9 ±0.3	0.4 ±1.1
	Tbnatwt2	-4.7 ±0.3	0.8 ±1.7
Composto 15	Tbnatwt1	-7.2 ±0.5	1.8 ±2.3
	Tbnatwt2	-7.3 ±0.9	2.6 ±3.0
Ácido para-aminossacilico	Tbnatwt1	-5.3 ±0.5	1.1 ±2.3
	Tbnatwt2	-5.1 ±0.4	1.2 ±2.5
Ácido benzoico hidrazida	Tbnatwt1	-5.1 ±0.2	0.3 ±1.1
	Tbnatwt2	-5.2 ±0.3	0.7 ±1.6

Tabela 2 – Número de ligações de hidrogênio mais frequentes para cada ligante e resíduo

	Número de Ligações									
Resíduo TBNAT	Tbnatwt1				Tbnatwt2					
	Isoniazida	Composto 15	Ácido para- aminossacilico	Ácido benzoico hidrazida	Isoniazida	Composto 15	Ácido para- aminossacilico	Ácido benzoico hidrazida		
GLU39			186	90						
CYS70	92	299	278		39	57	36	26		
THR109	64		129		193		274	24		
HIS110	44	67	103	46	191	30	307	141		
THR111					244		95	224		
GLY129			129	21						
PHE130						298	58			
GLY131	41	156	161							
GLY132						127				
GLN133						68				
LYS203	46	383	389	46	160	226	359	55		
THR209			362			80				
ASN 220		100				119				

CONCLUSÕES PARCIAIS

Embora a ordem de afinidade relativa observada esteja parcialmente de acordo com os dados experimentais, a diferença encontrada em termos de ①Gbind está dentro do limite de erro do programa de docagem, que é de ±2,6 kcal/mol, indicando que o método deve ser aprimorado quanto a este parâmetro.

REFERÊNCIAS

ABUHAMMAD, A., LOWE, E.D., MCDONOUGH, M.A., SHAW STEWART, P.D., KOLEK, S.A., SIM, E., GARMAN, E.F. Structure of arylamine N-acetyltransferase from Mycobacterium tuberculosis determined by cross-seeding with the homologous protein from M. marinum: triumph over adversity. Acta Crystallogr D Biol Crystallogr, v. 69, p. 1433-1446, 2012; BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Programa Nacional de Controle da Tuberculose. Brasília, 2012; FULLAM, E., KAWAMURA, A., WILKINSON, H., ABUHAMMAD, A., WESTWOOD, I., SIM, E. Comparison of the Arylamine N-Acetyltransferase from Mycobacterium tuberculosis. Journal Protein, v. 28, p. 281-293, 2009.